30 April 2004
GooOS - Google Operating System
GooOS - Google Operating System: "Das alles ist nur möglich, weil Google etwas ganz Neues, Großes aufgebaut hat: Einen riesigen, aus über 100.000 PCs bestehenden Rechner, der mit einem selbst entwickelten Betriebssystem betrieben wird, dem - wie Jason Kottke es nennt - Google Operating System GooOS. Ein System, das nicht nur effizient arbeitet, für jeden Zweck nutzbar ist und jeden Monat schneller wird. Es ist auch noch kostengünstiger, weil es mit Standard-Komponenten betrieben wird."
American Business Computers Katalog (1981)
In diesem American Business Computers Katalog kann man ein bisschen in der Vergangenheit schwelgen...
22 April 2004
Alan Kay erhält den Turing Award 2003
heise online - Alan Kay erhält den Turing Award 2003: "Mit dieser Auszeichnung wird der Mathematiker und Molekularbiologe Alan Kay für sein Lebenswerk geehrt, insbesondere für die Entwicklung von Smalltalk und das System des objektorientierten Programmierens."
20 April 2004
Gödel's Incompleteness Theorem
Gödel's Incompleteness Theorem: "The proof of Gödel's Incompleteness Theorem is so simple, and so sneaky, that it is almost embarassing to relate. His basic procedure is as follows:
1. Someone introduces Gödel to a UTM, a machine that is supposed to be a Universal Truth Machine, capable of correctly answering any question at all.
2. Gödel asks for the program and the circuit design of the UTM. The program may be complicated, but it can only be finitely long. Call the program P(UTM) for Program of the Universal Truth Machine.
3. Smiling a little, Gödel writes out the following sentence: 'The machine constructed on the basis of the program P(UTM) will never say that this sentence is true.' Call this sentence G for Gödel. Note that G is equivalent to: 'UTM will never say G is true.'
4. Now Gödel laughs his high laugh and asks UTM whether G is true or not.
5. If UTM says G is true, then 'UTM will never say G is true' is false. If 'UTM will never say G is true' is false, then G is false (since G = 'UTM will never say G is true'). So if UTM says G is true, then G is in fact false, and UTM has made a false statement. So UTM will never say that G is true, since UTM makes only true statements.
6. We have established that UTM will never say G is true. So 'UTM will never say G is true' is in fact a true statement. So G is true (since G = 'UTM will never say G is true').
7. 'I know a truth that UTM can never utter,' Gödel says. 'I know that G is true. UTM is not truly universal.'
Think about it - it grows on you ..."
1. Someone introduces Gödel to a UTM, a machine that is supposed to be a Universal Truth Machine, capable of correctly answering any question at all.
2. Gödel asks for the program and the circuit design of the UTM. The program may be complicated, but it can only be finitely long. Call the program P(UTM) for Program of the Universal Truth Machine.
3. Smiling a little, Gödel writes out the following sentence: 'The machine constructed on the basis of the program P(UTM) will never say that this sentence is true.' Call this sentence G for Gödel. Note that G is equivalent to: 'UTM will never say G is true.'
4. Now Gödel laughs his high laugh and asks UTM whether G is true or not.
5. If UTM says G is true, then 'UTM will never say G is true' is false. If 'UTM will never say G is true' is false, then G is false (since G = 'UTM will never say G is true'). So if UTM says G is true, then G is in fact false, and UTM has made a false statement. So UTM will never say that G is true, since UTM makes only true statements.
6. We have established that UTM will never say G is true. So 'UTM will never say G is true' is in fact a true statement. So G is true (since G = 'UTM will never say G is true').
7. 'I know a truth that UTM can never utter,' Gödel says. 'I know that G is true. UTM is not truly universal.'
Think about it - it grows on you ..."
Pi auswendig lernen leicht gemacht...
Slashdot Poll: "For those of you who want to remember pi to about 20 decimal points...
Sir, I bear a rhyme excelling
in mystic words and magic spelling;
celestial cherubs elucidate
but my own striving can't relate.
3.14159265358979323846 (count the letters)"
Sir, I bear a rhyme excelling
in mystic words and magic spelling;
celestial cherubs elucidate
but my own striving can't relate.
3.14159265358979323846 (count the letters)"
06 April 2004
Google News mal anders
newsmap stellt die Google News grafisch dar: sehr übersichtlich (und schön anzusehen...)
Abonnieren
Posts (Atom)